Long Short-Term Memory–Model Predictive Control Speed Prediction-Based Double Deep Q-Network Energy Management for Hybrid Electric Vehicle to Enhanced Fuel Economy
Sensors (Basel, Switzerland)(2025)
Abstract
How to further improve the fuel economy and emission performance of hybrid vehicles through scientific and reasonable energy management strategies has become an urgent issue to be addressed at present. This paper proposes an energy management model based on speed prediction using Long Short-Term Memory (LSTM) neural networks. The initial learning rate and dropout probability of the LSTM speed prediction model are optimized using a Double Deep Q-Network (DDQN) algorithm. Furthermore, the LSTM speed prediction function is implemented within a Model Predictive Control (MPC) framework. A fuzzy logic-based driving mode recognition system classifies driving cycles and identifies real-time conditions. The fuzzy logic-based driving mode is used to divide the typical driving cycle into different driving modes, and the real-time driving modes are identified. The LSTM-MPC method achieves low RMSE across different prediction horizons. Using predicted power demand, battery SOC, and real-time power demand as inputs, the model implements MPC for real-time control. In our experiments, four prediction horizons (5 s, 10 s, 15 s, and 20 s) were set. The energy management strategy demonstrated optimal performance and the lowest fuel consumption at a 5 s horizon, with fuel usage at only 6.3220 L, saving 2.034 L compared to the rule-based strategy. Validation under the UDDS driving cycle revealed that the LSTM-MPC-DDQN strategy reduced fuel consumption by 0.2729 L compared to the rule-based approach and showed only a 0.0749 L difference from the DP strategy.
MoreTranslated text
Key words
hybrid electric vehicle,LSTM speed prediction,DDQN,MPC,deep reinforcement learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined