WeChat Mini Program
Old Version Features

A Cross-Modal Attention-Driven Multi-Sensor Fusion Method for Semantic Segmentation of Point Clouds

Huisheng Shi, Xin Wang,Jianghong Zhao, Xinnan Hua

Sensors (Basel, Switzerland)(2025)

Cited 0|Views0
Abstract
To bridge the modality gap between camera images and LiDAR point clouds in autonomous driving systems—a critical challenge exacerbated by current fusion methods’ inability to effectively integrate cross-modal features—we propose the Cross-Modal Fusion (CMF) framework. This attention-driven architecture enables hierarchical multi-sensor data fusion, achieving state-of-the-art performance in semantic segmentation tasks.The CMF framework first projects point clouds onto the camera coordinates through the use of perspective projection to provide spatio-depth information for RGB images. Then, a two-stream feature extraction network is proposed to extract features from the two modalities separately, and multilevel fusion of the two modalities is realized by a residual fusion module (RCF) with cross-modal attention. Finally, we design a perceptual alignment loss that integrates cross-entropy with feature matching terms, effectively minimizing the semantic discrepancy between camera and LiDAR representations during fusion. The experimental results based on the SemanticKITTI and nuScenes benchmark datasets demonstrate that the CMF method achieves mean intersection over union (mIoU) scores of 64.2% and 79.3%, respectively, outperforming existing state-of-the-art methods in regard to accuracy and exhibiting enhanced robustness in regard to complex scenarios. The results of the ablation studies further validate that enhancing the feature interaction and fusion capabilities in semantic segmentation models through cross-modal attention and perceptually guided cross-entropy loss (Pgce) is effective in regard to improving segmentation accuracy and robustness.
More
Translated text
Key words
cross-modal fusion,deep learning,semantic segmentation,point cloud,image,multi-sensor
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined