An Interpretable Radiomics-Based Machine Learning Model for Predicting Reverse Left Ventricular Remodeling in STEMI Patients Using Late Gadolinium Enhancement of Myocardial Scar.
European radiology(2025)
Abstract
OBJECTIVES:To evaluate the added value of the late gadolinium enhancement (LGE)-scar radiomics features in predicting reverse left ventricular remodeling (r-LVR) in ST-segment elevation myocardial infarction (STEMI) patients using machine learning (ML). MATERIALS AND METHODS:This retrospective study included 105 STEMI patients who underwent CMR within 7 days and 5 months post-percutaneous coronary intervention (PCI) on 1.5-T or 3.0-T MRI scanners (January 2014-2023). Radiomics features from LGE scar images and routine CMR markers were analyzed using a LightGBM model enhanced by Shapley Additive exPlanations (SHAP) for interpretability. Patients were divided into training (80) and test (25) sets. Three predictive models were developed: traditional CMR, LGE-scar radiomics, and a combined model integrating both. Model performance was assessed using ROC curves and AUC analysis. RESULTS:In the training set, the traditional CMR model achieved an AUC of 0.745 (95% CI: 0.62-0.86), the LGE-scar radiomics model had an AUC of 0.712 (95% CI: 0.58-0.83), and the combined model showed the highest AUC of 0.754 (95% CI: 0.63-0.86). In the test set, the traditional CMR model's AUC decreased to 0.656 (95% CI: 0.42-0.88), while the LGE-scar radiomics model improved to 0.818 (95% CI: 0.59-1.00). The combined model achieved the highest AUC of 0.890 (95% CI: 0.75-1.00). SHAP analysis highlighted significant predictors such as infarct percentage of LV mass and wavelet-transformed texture features. CONCLUSION:Integrating LGE scar radiomics features with traditional CMR parameters in a LightGBM model enhances predictive accuracy for r-LVR in STEMI patients, potentially improving patient stratification and treatment personalization. KEY POINTS:Question Predicting r-LVR in STEMI patients remains challenging due to limitations in current imaging approaches. Findings Integrating LGE-scar radiomics and cardiac magnetic resonance markers in the LightGBM model significantly improves prediction accuracy for r-LVR. Clinical relevance This interpretable ML model enhances r-LVR prediction, supporting patient stratification and optimizing treatment strategies to improve patient outcomes.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined