WeChat Mini Program
Old Version Features

Generative Large Language Model-Powered Conversational AI App for Personalized Risk Assessment: Case Study in COVID-19.

JMIR AI(2025)

Department of Computer Science Wayne State University Detroit

Cited 0|Views2
Abstract
BACKGROUND:Large language models (LLMs) have demonstrated powerful capabilities in natural language tasks and are increasingly being integrated into health care for tasks like disease risk assessment. Traditional machine learning methods rely on structured data and coding, limiting their flexibility in dynamic clinical environments. This study presents a novel approach to disease risk assessment using generative LLMs through conversational artificial intelligence (AI), eliminating the need for programming. OBJECTIVE:This study evaluates the use of pretrained generative LLMs, including LLaMA2-7b and Flan-T5-xl, for COVID-19 severity prediction with the goal of enabling a real-time, no-code, risk assessment solution through chatbot-based, question-answering interactions. To contextualize their performance, we compare LLMs with traditional machine learning classifiers, such as logistic regression, extreme gradient boosting (XGBoost), and random forest, which rely on tabular data. METHODS:We fine-tuned LLMs using few-shot natural language examples from a dataset of 393 pediatric patients, developing a mobile app that integrates these models to provide real-time, no-code, COVID-19 severity risk assessment through clinician-patient interaction. The LLMs were compared with traditional classifiers across different experimental settings, using the area under the curve (AUC) as the primary evaluation metric. Feature importance derived from LLM attention layers was also analyzed to enhance interpretability. RESULTS:Generative LLMs demonstrated strong performance in low-data settings. In zero-shot scenarios, the T0-3b-T model achieved an AUC of 0.75, while other LLMs, such as T0pp(8bit)-T and Flan-T5-xl-T, reached 0.67 and 0.69, respectively. At 2-shot settings, logistic regression and random forest achieved an AUC of 0.57, while Flan-T5-xl-T and T0-3b-T obtained 0.69 and 0.65, respectively. By 32-shot settings, Flan-T5-xl-T reached 0.70, similar to logistic regression (0.69) and random forest (0.68), while XGBoost improved to 0.65. These results illustrate the differences in how generative LLMs and traditional models handle the increasing data availability. LLMs perform well in low-data scenarios, whereas traditional models rely more on structured tabular data and labeled training examples. Furthermore, the mobile app provides real-time, COVID-19 severity assessments and personalized insights through attention-based feature importance, adding value to the clinical interpretation of the results. CONCLUSIONS:Generative LLMs provide a robust alternative to traditional classifiers, particularly in scenarios with limited labeled data. Their ability to handle unstructured inputs and deliver personalized, real-time assessments without coding makes them highly adaptable to clinical settings. This study underscores the potential of LLM-powered conversational artificial intelligence (AI) in health care and encourages further exploration of its use for real-time, disease risk assessment and decision-making support.
More
Translated text
Key words
personalized risk assessment,large language model,conversational AI,artificial intelligence,COVID-19
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined