WeChat Mini Program
Old Version Features

Large Language Model–Driven Knowledge Graph Construction in Sepsis Care Using Multicenter Clinical Databases: Development and Usability Study

Hao Yang,Jiaxi Li, Chi Zhang, Alejandro Pazos Sierra,Bairong Shen

Journal of Medical Internet Research(2025)

Cited 0|Views4
Abstract
BackgroundSepsis is a complex, life-threatening condition characterized by significant heterogeneity and vast amounts of unstructured data, posing substantial challenges for traditional knowledge graph construction methods. The integration of large language models (LLMs) with real-world data offers a promising avenue to address these challenges and enhance the understanding and management of sepsis. ObjectiveThis study aims to develop a comprehensive sepsis knowledge graph by leveraging the capabilities of LLMs, specifically GPT-4.0, in conjunction with multicenter clinical databases. The goal is to improve the understanding of sepsis and provide actionable insights for clinical decision-making. We also established a multicenter sepsis database (MSD) to support this effort. MethodsWe collected clinical guidelines, public databases, and real-world data from 3 major hospitals in Western China, encompassing 10,544 patients diagnosed with sepsis. Using GPT-4.0, we used advanced prompt engineering techniques for entity recognition and relationship extraction, which facilitated the construction of a nuanced sepsis knowledge graph. ResultsWe established a sepsis database with 10,544 patient records, including 8497 from West China Hospital, 690 from Shangjin Hospital, and 357 from Tianfu Hospital. The sepsis knowledge graph comprises of 1894 nodes and 2021 distinct relationships, encompassing nine entity concepts (diseases, symptoms, biomarkers, imaging examinations, etc) and 8 semantic relationships (complications, recommended medications, laboratory tests, etc). GPT-4.0 demonstrated superior performance in entity recognition and relationship extraction, achieving an F1-score of 76.76 on a sepsis-specific dataset, outperforming other models such as Qwen2 (43.77) and Llama3 (48.39). On the CMeEE dataset, GPT-4.0 achieved an F1-score of 65.42 using few-shot learning, surpassing traditional models such as BERT-CRF (62.11) and Med-BERT (60.66). Building upon this, we compiled a comprehensive sepsis knowledge graph, comprising of 1894 nodes and 2021 distinct relationships. ConclusionsThis study represents a pioneering effort in using LLMs, particularly GPT-4.0, to construct a comprehensive sepsis knowledge graph. The innovative application of prompt engineering, combined with the integration of multicenter real-world data, has significantly enhanced the efficiency and accuracy of knowledge graph construction. The resulting knowledge graph provides a robust framework for understanding sepsis, supporting clinical decision-making, and facilitating further research. The success of this approach underscores the potential of LLMs in medical research and sets a new benchmark for future studies in sepsis and other complex medical conditions.
More
Translated text
Key words
sepsis,knowledge graph,large language models,prompt engineering,real-world,GPT-4.0
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined