LLM-based Typed Hyperresolution for Commonsense Reasoning with Knowledge Bases
ICLR 2025(2025)
University of Toronto
Abstract
Large language models (LLM) are being increasingly applied to tasks requiring commonsense reasoning. Despite their outstanding potential, the reasoning process of LLMs is prone to errors and hallucinations that hinder their applicability, especially in high-stakes scenarios. Several works have attempted to enhance commonsense reasoning performance of LLMs by (i) using prompting styles that elicit more accurate reasoning, (ii) utilizing the LLM as a semantic parser for a symbolic reasoner, or (iii) enforcing the LLM to simulate a logical inference rule. However, all these solutions have critical limitations: they are unable to leverage the internal commonsense knowledge of the LLM in tandem with an axiomatic knowledge base, they lack a mechanism to reliably repair erroneous inference steps, and their application is restricted to small knowledge bases that fit the context limit of the LLM. In this work, we present LLM-based Typed Hyperresolution (LLM-TH), a logical commonsense reasoning framework that leverages "theory resolution", a concept from classical logical inference which enables integrating LLMs into the "resolution" inference rule, thus mitigating reasoning errors and hallucinations and enabling verification of the reasoning procedure. LLM-TH is also equipped with a mechanism for repairing erroneous inference steps supported by theoretical guarantees. Using "Hyperresolution" and "Typed inference" schemes, we show that LLM-TH can efficiently reason over large knowledge bases consisting of tens of thousands of rules with arbitrary predicate arities. Our experiments on three diverse language-based reasoning tasks—preference reasoning, multi-domain deductive reasoning, and geographical question answering—showcase that LLM-TH, using merely a BART 406M parameter NLI entailment model, significantly reduces reasoning errors compared to baselines using Llama3-70B, Gemini1.5-Flash, GPT-3.5-Turbo, and Mixtral-46.7B.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined