Patterns of Brain Structure-Function Coupling Variations Related to Height and Growth Hormone in Children with Short Stature
Pediatric research(2025)
The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
Abstract
BACKGROUND:Adolescents with varied growth hormone (GH) levels exhibit height discrepancies. This study investigated the association of height and GH on structural-functional connectivity (SC-FC) coupling within brains of growth hormone deficiency (GHD), idiopathic short stature (ISS), and healthy controls (HC). METHODS:Retrospective analysis of 79 GHD, 88 ISS, and 37 HC subjects was performed, incorporating clinical, behavioral assessments, and multimodal brain MRI data. SC-FC coupling matrices were derived from diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI). Group comparisons used ANOVA and Tukey HSD tests, while partial correlation assessed correlations of hormone levels and cognitive scores. RESULTS:Both short-statured groups (GHD and ISS) displayed reduced hormone levels, cognitive behavioral scores, and SC-FC coupling in primary sensory regions (visual (VIS) and sensorimotor network (SMN)) compared to HC. Bilateral SMN showed the highest intra-network variability amongst all groups. GHD exhibited greater inter-network SC-FC coupling variability than ISS, with HC showing the least. A negative correlation between peak GH levels and SC-FC coupling across multiple networks was observed exclusively in GHD. CONCLUSION:Height and GH distinctly influenced brain structure-function coupling in children with short stature. Reduced SC-FC coupling in primary sensory regions highlights their vulnerability to developmental variations. IMPACT:The study demonstrates that height and growth hormone (GH) levels have distinct impacts on brain structure-function coupling (SC-FC) in children with short stature, with primary sensory regions (e.g., visual and sensorimotor networks) being particularly vulnerable. The findings highlight the susceptibility of primary sensory brain regions to developmental variations and suggest that GH plays a critical role in modulating brain connectivity, particularly in the GHD group. The study underscores the importance of early intervention for children with GHD, as reduced SC-FC coupling in primary sensory regions may correlate with cognitive and behavioral outcomes.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined