Multimodal Feature-Guided Diffusion Model for Low-Count PET Image Denoising.
Medical physics(2025)
College of Computer Science and Engineering
Abstract
BACKGROUND:To minimize radiation exposure while obtaining high-quality Positron Emission Tomography (PET) images, various methods have been developed to derive standard-count PET (SPET) images from low-count PET (LPET) images. Although deep learning methods have enhanced LPET images, they rarely utilize the rich complementary information from MR images. Even when MR images are used, these methods typically employ early, intermediate, or late fusion strategies to merge features from different CNN streams, failing to fully exploit the complementary properties of multimodal fusion. PURPOSE:In this study, we introduce a novel multimodal feature-guided diffusion model, termed MFG-Diff, designed for the denoising of LPET images with the full utilization of MRI. METHODS:MFG-Diff replaces random Gaussian noise with LPET images and introduces a novel degradation operator to simulate the physical degradation processes of PET imaging. Besides, it uses a novel cross-modal guided restoration network to fully exploit the modality-specific features provided by the LPET and MR images and utilizes a multimodal feature fusion module employing cross-attention mechanisms and positional encoding at multiple feature levels for better feature fusion. RESULTS:Under four counts (2.5%, 5.0%, 10%, and 25%), the images generated by our proposed network showed superior performance compared to those produced by other networks in both qualitative and quantitative evaluations, as well as in statistical analysis. In particular, the peak-signal-to-noise ratio of the generated PET images improved by more than 20% under a 2.5% count, the structural similarity index improved by more than 16%, and the root mean square error reduced by nearly 50%. On the other hand, our generated PET images had significant correlation (Pearson correlation coefficient, 0.9924), consistency, and excellent quantitative evaluation results with the SPET images. CONCLUSIONS:The proposed method outperformed existing state-of-the-art LPET denoising models and can be used to generate highly correlated and consistent SPET images obtained from LPET images.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined