Renewable Electricity Management Cloud System for Smart Communities Using Advanced Machine Learning
Energies(2025)
Abstract
Based on the renewable energy assessment in 2023, it was found that only 21% of total electricity is generated using renewable sources. As the global demand for electricity rises in the AI world, the need for electricity management will increase and must be optimized. Based on research, many companies are working on green AI electricity management, but few companies are working on predicting shortages. To identify the rising electricity demand, predict the shortage, and to bring attention to consumption, this study focuses on the optimization of solar electricity generation, tracking its consumption, and forecasting the electricity shortages well in advance. This system demonstrates a novel approach using advanced machine learning, deep learning, and reinforcement learning to maximize solar energy utilization. This paper proposes and develops a community-based model that manages and analyzes multiple buildings’ energy usage, allowing the model to perform both distributed and aggregated decision-making, achieving an accuracy of 98.2% using stacking results of models with reinforcement learning. Concerning the real-world problem, this paper provides a sustainable solution by combining data-driven models with reinforcement learning, contributing to the current market need.
MoreTranslated text
Key words
green AI,electricity shortage forecasting,consumption analysis,usage analysis,distributed model,aggregated model
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined


