DatawiseAgent: A Notebook-Centric LLM Agent Framework for Automated Data Science.
CoRR(2025)
Abstract
Data Science tasks are multifaceted, dynamic, and often domain-specific. Existing LLM-based approaches largely concentrate on isolated phases, neglecting the interdependent nature of many data science tasks and limiting their capacity for comprehensive end-to-end support. We propose DatawiseAgent, a notebook-centric LLM agent framework that unifies interactions among user, agent and the computational environment through markdown and executable code cells, supporting flexible and adaptive automated data science. Built on a Finite State Transducer(FST), DatawiseAgent orchestrates four stages, including DSF-like planning, incremental execution, self-debugging, and post-filtering. Specifically, the DFS-like planning stage systematically explores the solution space, while incremental execution harnesses real-time feedback and accommodates LLM's limited capabilities to progressively complete tasks. The self-debugging and post-filtering modules further enhance reliability by diagnosing and correcting errors and pruning extraneous information. Extensive experiments on diverse tasks, including data analysis, visualization, and data modeling, show that DatawiseAgent consistently outperforms or matches state-of-the-art methods across multiple model settings. These results highlight its potential to generalize across data science scenarios and lay the groundwork for more efficient, fully automated workflows.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined