Simplifying Field Traversing Efficiency Estimation Using Machine Learning and Geometric Field Indices
AgriEngineering(2025)
Department of Supply Chain Management
Abstract
Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost, maximizing productivity, and supporting sustainability. Field efficiency is influenced by several unpredictable and stochastic factors that are difficult to determine due to the inherent variability in field configurations and operational conditions. This study aimed to simplify field efficiency estimation by training machine learning regression algorithms on data generated from a farm management information system covering a combination of different field areas and shapes, working patterns, and machine-related parameters. The gradient-boosting regression-based model was the most effective, achieving a high mean R2 value of 0.931 in predicting field efficiency, by taking into account only basic geometric field indices. The developed model showed also strong predictive performance for indicative agricultural fields located in Europe and North America, reducing considerably the computational time by an average of 73.4% compared to the corresponding analytical approach. Overall, the results of this study highlight the potential of machine learning for simplifying field efficiency prediction without requiring detailed knowledge of a plethora of variables associated with agricultural operations. This can be particularly valuable for farmers who need to make informed decisions about resource allocation and operational planning.
MoreTranslated text
Key words
precision agriculture,coverage path planning,agricultural machinery,machine learning regression algorithms,predictive modeling,farm management information system (FMIS),computational time reduction
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined