WeChat Mini Program
Old Version Features

Pushing the Boundaries of Structure-Based Drug Design Through Collaboration with Large Language Models

Bowen Gao, Yanwen Huang, Yiqiao Liu, Wenxuan Xie,Wei-Ying Ma, Ya-Qin Zhang,Yanyan Lan

arXiv · Biomolecules(2025)

Cited 0|Views28
Abstract
Structure-Based Drug Design (SBDD) has revolutionized drug discovery by enabling the rational design of molecules for specific protein targets. Despite significant advancements in improving docking scores, advanced 3D-SBDD generative models still face challenges in producing drug-like candidates that meet medicinal chemistry standards and pharmacokinetic requirements. These limitations arise from their inherent focus on molecular interactions, often neglecting critical aspects of drug-likeness. To address these shortcomings, we introduce the Collaborative Intelligence Drug Design (CIDD) framework, which combines the structural precision of 3D-SBDD models with the chemical reasoning capabilities of large language models (LLMs). CIDD begins by generating supporting molecules with 3D-SBDD models and then refines these molecules through LLM-supported modules to enhance drug-likeness and structural reasonability. When evaluated on the CrossDocked2020 dataset, CIDD achieved a remarkable success ratio of 37.94 state-of-the-art benchmark of 15.72 and drug-likeness is often seen as a trade-off, CIDD uniquely achieves a balanced improvement in both by leveraging the complementary strengths of different models, offering a robust and innovative pathway for designing therapeutically promising drug candidates.
More
Translated text
PDF
Bibtex
收藏
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined