WeChat Mini Program
Old Version Features

Predictive Modeling of Soil Salinity Integrating Remote Sensing and Soil Variables: an Ensembled Deep Learning Approach

Sana Arshad,Jamil Hasan Kazmi,Endre Harsányi, Farheen Nazli, Waseem Hassan,Saima Shaikh, Main Al-Dalahme,Safwan Mohammed

Energy Nexus(2025)

Department of Geography

Cited 0|Views1
Abstract
Accurate predictions of soil salinity can significantly contribute to achieving the UN- Sustainable Development Goal (SDG-2) of ensuring ‘zero hunger.’ From this perspective, the current research aimed to predict soil electrical conductivity (EC) from remote sensing and soil data using advanced deep learning (DL) architectures. A total of 109 soil samples were analyzed for agricultural land use in the Middle Indus Basin of Pakistan. Seven salinity indices (SI-1 to SI-7) were derived from the 10m to 20m wavelength bands of Sentinel-2, along with vegetation and topographic covariates. Initially, Recursive Feature Elimination was implemented as a feature-selection method to select the most effective predictors. Subsequently, deep learning architectures, including a Feedforward Neural Network (FFNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), were employed to predict soil salinity. Research findings showed that EC ranged between 0.57dS/m to 11.5 dS/m in the study area. The evaluation metrics of the DL models revealed that a simple FFNN with three fully connected dense layers achieved the highest R2 = 0.88 for model training. However, the ensemble of improved FFNN and LSTM outperformed with the highest R2 and NSE = 0.84, and the lowest RMSE and MAE = 1.38 and 1.01, respectively, on the testing dataset. Optimized deep learning architectures with adjustments to the learning rate, dropout rate, and activation functions achieved the highest prediction accuracy with the lowest validation loss. Finally, SHapely Additive exPlanations (SHAP) revealed that elevation, pH, NDVI, SI-1, and SI-7 had highly significant impacts on EC predictions. This research provides insight into implementing advanced and interpretable DL architectures, supporting informed decision-making by agricultural stakeholders.
More
Translated text
Key words
Electrical Conductivity,Canopy Response Salinity Index,Feed Forward Neural Network,Pakistan
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined