WeChat Mini Program
Old Version Features

DeRi-IGP: Learning to Manipulate Rigid Objects Using Deformable Linear Objects Via Iterative Grasp-Pull

IEEE Robotics Autom Lett(2025)

Department of Computer Science

Cited 0|Views3
Abstract
Robotic manipulation of rigid objects via deformable linear objects (DLO) such as ropes is an emerging field of research with applications in various rigid object transportation tasks. A few methods that exist in this field suffer from limited robot action and operational space, poor generalization ability, and expensive model-based development. To address these challenges, we propose a universally applicable moving primitive called Iterative Grasp-Pull (IGP). We also introduce a novel vision-based neural policy that learns to parameterize the IGP primitive to manipulate DLO and transport their attached rigid objects to the desired goal locations. Additionally, our decentralized algorithm design allows collaboration among multiple agents to manipulate rigid objects using DLO. We evaluated the effectiveness of our approach in both simulated and real-world environments for a variety of soft-rigid body manipulation tasks. In the real world, we also demonstrate the effectiveness of our decentralized approach through human-robot collaborative transportation of rigid objects to given goal locations. We also showcase the large operational space of IGP primitive by solving distant object acquisition tasks. Lastly, we compared our approach with several model-based and learning-based baseline methods. The results indicate that our method surpasses other approaches by a significant margin. The project supplementary material is available at: https://sites.google.com/view/deri-igp
More
Translated text
Key words
Deep Learning in Grasping and Manipulation,Imitation Learning,Human-Robot Collaboration
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined