Edge-Guided Segmentation of Digital Rock Images: Integrating a Pretrained Edge Aware Path with the Main Segmentation Path
Computers & Geosciences(2025)
School of Geosciences
Abstract
Accurate segmentation of digital rock images is pivotal in digital rock analysis, as it significantly influences the outcomes of subsequent numerical simulations and parameter calculations. Traditional deep learning models for semantic segmentation often require extensive datasets for effective training, but acquiring rock samples used to be costly, hindering dataset expansion. Typical single-path segmentation models primarily focus on extracting semantic features, which may limit segmentation accuracy, especially for fine-grained segmentation of minor features. Incorporating edge feature information relevant to matrix and pore segmentation can improve segmentation accuracy while optimizing limited data resources. Therefore, a dual-path deep learning segmentation model introducing an additional edge-aware pathway to improve segmentation accuracy, because the edge features obtained from the edge-aware pathway are not only utilized as prior information alongside the original image to guide more effective feature extraction but also integrated into the decoding module to offer boundary constraint support for the image information restoration process. As an example of SegNet , the improved SegNet has shown improvements of 9.58%, 16.44%, 10.98%, and 7.57% in Dice, IoU, Precision, and Recall metrics, respectively, and the relative errors of elastic properties in terms of bulk modulus, shear modulus, and P- and S- wave velocities decrease by 7.06%, 12.13%, 4.22%, and 6.71%, respectively, and its performance better than the powerful DeepLabv3+ model. The similar improvement is observed in ResSegNet, UNet and ResUNet as introducing edge information, which demonstrates excellent performance on small datasets and lower computational costs and dataset requirements.
MoreTranslated text
Key words
Digital rock physics,Image Segmentation,Dual-path model,Edge feature
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined