Mode Switching-Induced Instability of Multi-Source Feed DC Microgrid
CoRR(2025)
Abstract
In DC microgrids (DCMGs), DC-bus signaling based control strategy is extensively used for power management, where mode switching plays a crucial role in achieving multi-source coordination. However, few studies have noticed the impact of mode switching and switching strategies on system voltage stability. To fill this gap, this paper aims to provide a general analysis framework for mode switching-induced instability in multi-source DCMGs. First, manifold theory is employed to analyze the stability of the DCMG switched system. Subsequently, the instability mechanism and its physical interpretation are explored. The positive feedback activated by the decreasing DC bus voltage during the switching process leads to instability. Switching strategy may inadvertently contribute to this instability. To improve stability, a novel control method based on mode scheduling is proposed, by adjusting switching strategy and thereby correcting the system trajectory. Finally, both real-time simulations and experimental tests on a DCMG system verify the correctness and effectiveness of theoretical analysis results.
MoreTranslated text
Key words
DC microgrid,large-signal stability,mode switching-induced instability,mode scheduling,switching strategy
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined