WeChat Mini Program
Old Version Features

High-Accuracy Clock Synchronization in Low-Power Wireless Semg Sensors

SENSORS(2025)

Univ Politecn Marche

Cited 0|Views2
Abstract
Wireless surface electromyography (sEMG) sensors are very practical in that they can be worn freely, but the radio link between them and the receiver might cause unpredictable latencies that hinder the accurate synchronization of time between multiple sensors, which is an important aspect to study, e.g., the correlation between signals sampled at different sites. Moreover, to minimize power consumption, it can be useful to design a sensor with multiple clock domains so that each subsystem only runs at the minimum frequency for correct operation, thus saving energy. This paper presents the design, implementation, and test results of an sEMG sensor that uses Bluetooth Low Energy (BLE) communication and operates in three different clock domains to save power. In particular, this work focuses on the synchronization problem that arises from these design choices. It was solved through a detailed study of the timings experimentally observed over the BLE connection, and through the use of a dual-stage filtering mechanism to remove timestamp measurement noise. Time synchronization through three different clock domains (receiver, microcontroller, and ADC) was thus achieved, with a resulting total jitter of just 47 µs RMS for a 1.25 ms sampling period, while the dedicated ADC clock domain saved between 10% to 50% of power, depending on the selected data rate.
More
Translated text
Key words
biomedical sensors,Bluetooth Low Energy (BLE),clock synchronization,low power,real-time systems,surface electromyography (sEMG),synchronous data acquisition,wireless body sensor networks
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined