WeChat Mini Program
Old Version Features

Combining Machine Learning Algorithms for Bridging Gaps in GRACE and GRACE Follow-On Missions Using ERA5-Land Reanalysis

Science of Remote Sensing(2025)

Byrd Polar and Climate Research Center

Cited 0|Views1
Abstract
The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GFO) missions have provided valuable data for monitoring global terrestrial water storage anomalies (TWSA) over the past two decades. However, the nearly one-year gap between these missions pose challenges for long-term TWSA measurements and various applications. Unlike previous studies, we use a combination of Machine Learning (ML) methods—Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB), Deep Neural Network (DNN), and Stacked Long-Short Term Memory (SLSTM)—to identify and efficiently bridge the gap between GRACE and GFO by using the best-performing ML model to estimate TWSA at each grid cell. The models were trained using six hydroclimatic variables (temperature, precipitation, runoff, evapotranspiration, ERA5-Land derived TWSA, and cumulative water storage change), as well as a vegetation index and timing variables, to reconstruct global land TWSA at 0.5° grid resolution. We evaluated the performance of each model using Nash-Sutcliffe Efficiency (NSE), Pearson’s Correlation Coefficient (PCC), and Root Mean Square Error (RMSE). Our results demonstrate test accuracy with area weighted average NSE, PCC, and RMSE of 0.51 ± 0.31, 0.71 ± 0.23, and 4.75 ± 3.63 cm, respectively. The model's performance was further compared across five climatic zones, with two previously reconstructed products (Li and Humphrey methods) at 26 major river basins, during flood/drought events, and for sea-level rise. Our results showcase the model's superior performance and its capability to accurately predict data gaps at both grid and basin scales globally.
More
Translated text
Key words
GRACE,Gap filling,Mass change,Machine learning,Deep learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined