WeChat Mini Program
Old Version Features

End-user Confidence in Artificial Intelligence-Based Predictions Applied to Biomedical Data

Zvi Kam, Lorenzo Peracchio,Giovanna Nicora

International journal of neural systems(2025)

Molecular Cell Biology Department

Cited 0|Views2
Abstract
Applications of Artificial Intelligence (AI) are revolutionizing biomedical research and healthcare by offering data-driven predictions that assist in diagnoses. Supervised learning systems are trained on large datasets to predict outcomes for new test cases. However, they typically do not provide an indication of the reliability of these predictions, even though error estimates are integral to model development. Here, we introduce a novel method to identify regions in the feature space that diverge from training data, where an AI model may perform poorly. We utilize a compact precompiled structure that allows for fast and direct access to confidence scores in real time at the point of use without requiring access to the training data or model algorithms. As a result, users can determine when to trust the AI model's outputs, while developers can identify where the model's applicability is limited. We validate our approach using simulated data and several biomedical case studies, demonstrating that our approach provides fast confidence estimates ([Formula: see text] milliseconds per case), with high concordance to previously developed methods (f-[Formula: see text]). These estimates can be easily added to real-world AI applications. We argue that providing confidence estimates should be a standard practice for all AI applications in public use.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined