A Comparison of Methods for Modeling Soundscape Dimensions Based on Different Datasetsa).
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA(2025)
Univ Appl Sci Dusseldorf
Abstract
Soundscape studies vary considerably in study design, statistical methods, and model fit metrics used. Due to this confounding of data and methods, it is difficult to assess the suitability of statistical modelling techniques used in the literature. Therefore, five different methods and two performance metrics were applied to three existing soundscape datasets to model soundscape Pleasantness and Eventfulness based on seven acoustic and three sociodemographic predictors. Datasets differed in soundscape type (urban outdoor vs indoor), experimental setting (field- vs lab-based), size, and study design (site- vs person-centered). The fixed-effects and mixed-effects methods ranged from linear to nonlinear regression based on advanced machine learning approaches. Results showed that models performed better for Eventfulness than for Pleasantness in most cases, while performance as measured by the out-of-sample R2 was dependent on the total variance of the target, especially in both field studies with imbalanced targets and groups. Nonlinear methods consistently outperformed linear regression, with random forest and extreme gradient boosting performing particularly well, while the performance levels of all nonlinear methods remained comparable. Mixed-effects models provided a more generalized, albeit slightly smaller prediction performance when tested on unknown groups. Finally, this study motivates the use of cross-validation with special splitting for analyzing small imbalanced datasets.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined