Artificial Intelligence in Surgical Coding: Evaluating Large Language Models for Current Procedural Terminology Accuracy in Hand Surgery
Journal of Hand Surgery Global Online(2025)
Department of General Surgery
Abstract
Purpose The advent of large language models (LLMs) like ChatGPT has introduced notable advancements in various surgical disciplines. These developments have led to an increased interest in the use of LLMs for Current Procedural Terminology (CPT) coding in surgery. With CPT coding being a complex and time-consuming process, often exacerbated by the scarcity of professional coders, there is a pressing need for innovative solutions to enhance coding efficiency and accuracy. Methods This observational study evaluated the effectiveness of five publicly available large language models—Perplexity.AI, Bard, BingAI, ChatGPT 3.5, and ChatGPT 4.0—in accurately identifying CPT codes for hand surgery procedures. A consistent query format was employed to test each model, ensuring the inclusion of detailed procedure components where necessary. The responses were classified as correct, partially correct, or incorrect based on their alignment with established CPT coding for the specified procedures. Results In the evaluation of artificial intelligence (AI) model performance on simple procedures, Perplexity.AI achieved the highest number of correct outcomes (15), followed by Bard and Bing AI (14 each). ChatGPT 4 and ChatGPT 3.5 yielded 8 and 7 correct outcomes, respectively. For complex procedures, Perplexity.AI and Bard each had three correct outcomes, whereas ChatGPT models had none. Bing AI had the highest number of partially correct outcomes (5). There were significant associations between AI models and performance outcomes for both simple and complex procedures. Conclusions This study highlights the feasibility and potential benefits of integrating LLMs into the CPT coding process for hand surgery. The findings advocate for further refinement and training of AI models to improve their accuracy and practicality, suggesting a future where AI-assisted coding could become a standard component of surgical workflows, aligning with the ongoing digital transformation in health care. Type of study/level of evidence Observational, IIIb.
MoreTranslated text
Key words
AI in surgery,ChatGPT,CPT coding,Current Procedural Terminology,Hand surgery efficiency,Large language models
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined