Graph Neural Network-Based Approach for Detecting False Data Injection Attacks on Voltage Stability
IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY(2025)
Texas A&M Univ
Abstract
The integration of information and communication technologies into modern power systems has contributed to enhanced efficiency, controllability, and voltage regulation. Concurrently, these technologies expose power systems to cyberattacks, which could lead to voltage instability and significant damage. Traditional false data injection attacks (FDIAs) detectors are inadequate in addressing cyberattacks on voltage regulation since a) they overlook such attacks within power grids and b) primarily rely on static thresholds and simple anomaly detection techniques, which cannot capture the complex interplay between voltage stability, cyberattacks, and defensive actions. To address the aforementioned challenges, this paper develops an FDIA detection approach that considers data falsification attacks on voltage regulation and enhances the voltage stability index. A graph autoencoder-based detector that is able to identify cyberattacks targeting voltage regulation is proposed. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The proposed detector underwent rigorous training and testing across different kinds of attacks, demonstrating enhanced generalization performance in all situations. Simulations were performed on the Iberian power system topology, featuring 486 buses. The proposed model achieves 98.11% average detection rate, which represents a significant enhancement of 10-25% compared to the cutting-edge detectors. This provides strong evidence for the effectiveness of proposed strategy in tackling cyberattacks on voltage regulation.
MoreTranslated text
Key words
Power system stability,Voltage control,Stability criteria,Detectors,Computer crime,Indexes,Reactive power,Autoencoders,Voltage measurement,Power grids,Cybersecurity,voltage regulation,graph autoencoder,voltage stability,false data injection attacks,bad data intrusion,machine learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined