Application of a General Large Language Model-Based Classification System to Retrieve Information about Oncological Trials.
Oncology(2025)
Abstract
INTRODUCTION:The automated classification of clinical trials and key categories within the medical literature is increasingly relevant, particularly in oncology, as the volume of publications and trial reports continues to expand. Large language models (LLMs) may provide new opportunities for automating diverse classification tasks. They could be used for general-purpose text classification, retrieving information about oncological trials. METHODS:A general text classification framework with adaptable prompt, model and categories for the classification was developed. The framework was tested with four datasets comprising nine binary classification questions related to oncological trials. Evaluation was conducted using a locally hosted Mixtral-8x7B-Instruct v0.1-GPTQ model and three cloud-based LLMs: Mixtral-8x7B-Instruct v0.1, Llama3.1-70B-Instruct, and Qwen-2.5-72B. RESULTS:The system consistently produced valid responses with the local Mixtral-8x7B-Instruct model and the Llama3.1-70B-Instruct model. It achieved a response validity rate of 99.70% and 99.88% for the cloud-based Mixtral and Qwen models, respectively. Across all models, the framework achieved an overall accuracy of >94%, precision of >92%, recall of >90%, and an F1-score of >92%. Question-specific accuracy ranged from 86.33% to 99.83% for the local Mixtral model, 85.49%-99.83% for the cloud-based Mixtral model, 90.50%-99.83% for the Llama3.1 model, and 77.13%-99.83% for the Qwen model. CONCLUSION:The LLM-based classification framework exhibits robust accuracy and adaptability across various oncological trial classification tasks. While there remain some challenges such as strong prompt dependence and high computational and hardware demands, LLMs will play a crucial role in automating the classification of oncological trials and literature as the technology continues to advance.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined