WeChat Mini Program
Old Version Features

Deep Learning-Based Edge Detection for Random Natural Images

Neuroscience Informatics(2024)

Dept. of Computer Science and Engineering

Cited 0|Views2
Abstract
Edge detection plays a critical role in computer vision, particularly in the analysis of random natural images. It serves as a fundamental step in tasks such as image segmentation, shape extraction, pattern recognition, auto-navigation, and motion analysis, with applications spanning various domains including radar and sonar image processing. The edge detection model attempts to identify points in digital images where significant intensity changes occur, known as edges or region boundaries. Traditionally, edge detection relied on gradient-based operators, which often produced jagged edges and were susceptible to image noise. In recent years, the emergence of deep learning technology has revolutionized this field by utilizing its ability to automatically learn complex features from natural images. Deep learning approaches offer significant advantages in capturing high-level representations, thereby improving the accuracy and robustness of edge detection algorithms. Moreover, the effectiveness of edge detection techniques varies depending on the content and classification of images, such as natural scenes, medical images, or underwater environments. This study aims to evaluate and compare the performance of five widely used deep learning-based edge detection methods to identify the most effective approach specifically tailored for natural images. Through comprehensive experimentation and analysis, this research contributes to advancing the state-of-the-art in edge detection for random natural images, providing insights into the optimal application of deep learning techniques in this domain.
More
Translated text
Key words
Edge detection,Gradient operator,Fuzzy inferencing,Evolutionary algorithms,Deep learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined