Interventionally Consistent Surrogates for Complex Simulation Models
NEURIPS 2024(2024)
Postdoc
Abstract
Large-scale simulation models of complex socio-technical systems provide decision-makers with high-fidelity testbeds in which policy interventions can be evaluated and _what-if_ scenarios explored. Unfortunately, the high computational cost of such models inhibits their widespread use in policy-making settings. Surrogate models can address these computational limitations, but to do so they must behave consistently with the simulator under interventions of interest. In this paper, we build upon recent developments in causal abstractions to develop a framework for learning interventionally consistent surrogate models for large-scale, complex simulation models. We provide theoretical results showing that our proposed approach induces surrogates to behave consistently with high probability with respect to the simulator across interventions of interest, facilitating rapid experimentation with policy interventions in complex systems. We further demonstrate with empirical studies that conventionally trained surrogates can misjudge the effect of interventions and misguide decision-makers towards suboptimal interventions, while surrogates trained for _interventional_ consistency with our method closely mimic the behaviour of the original simulator under interventions of interest.
MoreTranslated text
Key words
agent-based model,causal abstraction,complex simulator,surrogate model
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined