WeChat Mini Program
Old Version Features

A Hybrid ODE-NN Framework for Modeling Incomplete Physiological Systems

IEEE transactions on bio-medical engineering(2025)

Department of Electrical and Computer Engineering

Cited 0|Views4
Abstract
This paper proposes a method to learn approximations of missing Ordinary Differential Equations (ODEs) and states in physiological models where knowledge of the system's relevant states and dynamics is incomplete. The proposed method augments known ODEs with neural networks (NN), then trains the hybrid ODE-NN model on a subset of available physiological measurements (i.e., states) to learn the NN parameters that approximate the unknown ODEs. Thus, this method can model an approximation of the original partially specified system subject to the constraints of known biophysics. This method also addresses the challenge of jointly estimating physiological states, NN parameters, and unknown initial conditions during training using recursive Bayesian estimation. We validate this method using two simulated physiological systems, where subsets of the ODEs are assumed to be unknown during the training and test processes. The proposed method almost perfectly tracks the ground truth in the case of a single missing ODE and state and performs well in other cases where more ODEs and states are missing. This performance is robust to input signal perturbations and noisy measurements. A critical advantage of the proposed hybrid methodology over purely data-driven methods is the incorporation of the ODE structure in the model, which allows one to infer unobserved physiological states. The ability to flexibly approximate missing or inaccurate components in ODE models improves a significant modeling bottleneck without sacrificing interpretability.
More
Translated text
Key words
Recurrent neural networks,Bayesian filtering,differential equations,retina circulation,neuron models,Hodgkin Huxley model
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined