HDBind: Encoding of Molecular Structure with Hyperdimensional Binary Representations
SCIENTIFIC REPORTS(2024)
Univ Calif San Diego
Abstract
Traditional methods for identifying “hit” molecules from a large collection of potential drug-like candidates rely on biophysical theory to compute approximations to the Gibbs free energy of the binding interaction between the drug and its protein target. These approaches have a significant limitation in that they require exceptional computing capabilities for even relatively small collections of molecules. Increasingly large and complex state-of-the-art deep learning approaches have gained popularity with the promise to improve the productivity of drug design, notorious for its numerous failures. However, as deep learning models increase in their size and complexity, their acceleration at the hardware level becomes more challenging. Hyperdimensional Computing (HDC) has recently gained attention in the computer hardware community due to its algorithmic simplicity relative to deep learning approaches. The HDC learning paradigm, which represents data with high-dimension binary vectors, allows the use of low-precision binary vector arithmetic to create models of the data that can be learned without the need for the gradient-based optimization required in many conventional machine learning and deep learning methods. This algorithmic simplicity allows for acceleration in hardware that has been previously demonstrated in a range of application areas (computer vision, bioinformatics, mass spectrometery, remote sensing, edge devices, etc.). To the best of our knowledge, our work is the first to consider HDC for the task of fast and efficient screening of modern drug-like compound libraries. We also propose the first HDC graph-based encoding methods for molecular data, demonstrating consistent and substantial improvement over previous work. We compare our approaches to alternative approaches on the well-studied MoleculeNet dataset and the recently proposed LIT-PCBA dataset derived from high quality PubChem assays. We demonstrate our methods on multiple target hardware platforms, including Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs), showing at least an order of magnitude improvement in energy efficiency versus even our smallest neural network baseline model with a single hidden layer. Our work thus motivates further investigation into molecular representation learning to develop ultra-efficient pre-screening tools. We make our code publicly available at https://github.com/LLNL/hdbind .
MoreTranslated text
Key words
Hyperdimensional computing,Machine learning,Representation learning,Computational chemistry,Drug discovery
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined