WeChat Mini Program
Old Version Features

A Compact Home-based Training System for Preventing Frailty Using a Mapping Model and Cross-dataset Transfer Learning

IEEE Journal of Selected Areas in Sensors(2024)

Dept. of Academy of engineering and technologyFudan University

Cited 0|Views1
Abstract
Frailty, is becoming a more serious issue as the population ages. Numerous studies have shown that exercise can effectively slow the development of frailty. Compared with vigorous exercise, Baduanjin (BDJ), a kind of traditional Chinese qigong with eight simple movements, is more suitable for frailty patients. BDJ has been used to train frailty patients by physical therapists. To provide an enhanced training method, we designed a lightweight family-based frailty training system via a virtual BDJ coach. To achieve a compact system, we use a webcam as the main device. The system also supports the Kinect framework. We use pose estimation and motion recognition methods to analyze the user's movements. In addition, a novel transfer learning method is proposed. We designed a mapping model called “Skeleton Mapnet” to convert skeletal data from different frameworks. This method enables datasets from different frameworks to share classification models. It can also mix skeletal data from different frameworks to solve the lack of webcam datasets. Such a design allows the system to be easily ported into other platforms. In addition, the system is also suitable for the use of the Artificial Intelligence(AI) of Things. Our design ensures that frailty patients can easily learn and operate the system.
More
Translated text
Key words
Frailty,Virtual Reality (VR),Pose Estimation,Action Recognition,Transfer Learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined