WeChat Mini Program
Old Version Features

K-Means Clustering in Fingerprint-Based Configuration Selection for Fitting Interatomic Potentials.

Miroslav Lebeda, Jan Drahokoupil, Ludvik Lobel,Petr Vlcak

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2024)

Czech Tech Univ

Cited 0|Views1
Abstract
In this study, we present a method for selecting an arbitrary number of distinct configurations from a larger data set by applying k-means clustering to atomistic configuration fingerprints based on the CrystalNN model and radial distribution function (RDF). This approach improves the accuracy of fitting classical molecular dynamics interatomic potentials to density functional theory (DFT) data for both energies and forces while requiring fewer configurations than random selection. We demonstrate this improvement by fitting an embedded-atom method (EAM) potential for titanium, using various configurational sizes from an initial set of 1800 configurations. The k-means clustering consistently achieves better precision and lower standard deviations for a smaller number of configurations than random selection. The results also suggest that only about 30 configurations are sufficient to obtain an EAM model that describes well the full set of 1800 configurations in terms of energies and forces. Additionally, t-distributed stochastic neighbor embedding (t-SNE) method was used to reduce the configuration fingerprints into 2D space, and it revealed an overlap between two configuration subsets with and without Ti vacancy, indicating similar atomic environments. This similarity is captured by k-means clustering but not by random selection. Furthermore, when the overlapping configurations with vacancies were excluded from the k-means algorithm and used only as a test set, their energy and force predictions showed similar precision to those when they were included. This indicates that the overlapping configurations in the 2D t-SNE space indeed imply potential information redundancy among the atomistic configurations.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined