WeChat Mini Program
Old Version Features

MarkerDB 2.0: a Comprehensive Molecular Biomarker Database for 2025

NUCLEIC ACIDS RESEARCH(2024)

Univ Alberta

Cited 0|Views3
Abstract
MarkerDB (https://markerdb.ca) has become a leading resource for comprehensive information on molecular biomarkers. Over the past 3 years, the database has evolved significantly, reflecting the dynamic landscape of biomarker research and increasing demands from its user community. This year's update, which is called MarkerDB 2.0, introduces key improvements to enhance the database's usability, consistency and the range of biomarkers covered. These improvements include (i) the addition of thousands of new biomarkers and associated health conditions, (ii) the inclusion of many new biomarker types and categories, (iii) upgraded searches and data filtering functionalities, (iv) new features for exploring and understanding biomarker panels and (v) significantly expanded and improved descriptions. These upgrades, along with numerous minor improvements in content, interface, layout and overall website performance, have greatly enhanced MarkerDB's usability and capacity to facilitate biomarker interpretation across various research domains. MarkerDB remains committed to providing a free, publicly accessible platform for consolidated information on a wide range of molecular (protein, genetic, chromosomal and chemical/small molecule) biomarkers, covering diagnostic, prognostic, risk, monitoring, safety and response-related biomarkers. We are confident that these upgrades and updates will improve MarkerDB's user friendliness, increase its utility and greatly expand its potential applications to many other areas of clinical medicine and biomedical research. [GRAPHICS] .
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined