A Multigranularity Learning Path Recommendation Framework Based on Knowledge Graph and Improved Ant Colony Optimization Algorithm for E-Learning
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS(2024)
Beijing Normal Univ
Abstract
In e-learning, extracting suitable learning objects (LOs) from a vast resource pool and organizing them into high-quality learning paths is crucial for helping e-learners achieve their goals. Numerous approaches have been proposed to recommend optimal learning paths for e-learners. However, it is essential to emphasize that e-learning systems typically consist of a wide range of LOs with varying levels of granularity, ranging from fine-grained to coarse-grained. Unfortunately, current research has not adequately considered the underlying granularity structure of LOs when optimizing learning paths. Existing methods primarily focus on organizing LOs at a single granularity level, limiting their applicability in real-world e-learning systems. To address the limitations, we propose a multigranularity learning path recommendation (MGLPR) framework that aims to flexibly and effectively integrate the diverse granularity levels of LOs into high-quality learning paths. In this framework, a two-layer [knowledge point (KP) and LO layers] model is developed to formulate the MGLPR problem as a constrained optimization problem and an improved ant colony optimization algorithm (IACO) is introduced to solve it to identify optimal learning paths for e-learners. To evaluate the effectiveness of the proposed IACO, we conducted extensive computational experiments using 30 simulation datasets with varying problem sizes and complexities. The results demonstrate that our proposed IACO achieves superior performance and robustness compared with other competitors. Additionally, an empirical study was conducted to investigate the efficacy of the proposed approach in an authentic learning context, with results indicating that the proposed method outperforms the traditional self-organized ones.
MoreTranslated text
Key words
Optimization,Electronic learning,Knowledge graphs,Hybrid power systems,Faces,Complexity theory,Ant colony optimization,Search problems,Recommender systems,Limiting,Ant colony optimization algorithm,e-learning,knowledge graph,learning path recommendation (LPR),multigranularity
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined