WeChat Mini Program
Old Version Features

Using a Bayesian Network to Classify Time to Return to Sport Based on Football Injury Epidemiological Data

Kate K Y Yung, Paul P Y Wu,Karen Aus der Fünten,Anne Hecksteden,Tim Meyer

crossref(2025)

Cited 0|Views0
Abstract
The return-to-sport (RTS) process is multifaceted and complex, as multiple variables may interact and influence the time to RTS. These variables include intrinsic factors related the player, such as anthropometrics and playing position, or extrinsic factors, such as competitive pressure. Providing an individualised estimation of time to return to play is often challenging, and clinical decision support tools are not common in sports medicine. This study uses epidemiological data to demonstrate a Bayesian Network (BN). We applied a BN that integrated clinical, non-clinical factors, and expert knowledge to classify time day to RTS and injury severity (minimal, mild, moderate and severe) for individual players. Retrospective injury data of 3374 player seasons and 6143 time-loss injuries from seven seasons of the professional German football league (Bundesliga, 2014/2015 through 2020/2021) were collected from public databases and media resources. A total of twelve variables from three categories (player's characteristics and anthropometrics, match information and injury information) were included. The response variables were 1) days to RTS (1-3, 4-7, 8-14, 15-28, 29-60, > 60, and 2) injury severity (minimal, mild, moderate, and severe). The sensitivity of the model for days to RTS was 0.24-0.97, while for severity categories it was 0.73-1.00. The user's accuracy of the model for days to RTS was 0.52-0.83, while for severity categories, it was 0.67-1.00. The BN can help to integrate different data types to model the probability of an outcome, such as days to return to sport. In our study, the BN may support coaches and players in 1) predicting days to RTS given an injury, 2) team planning via assessment of scenarios based on players' characteristics and injury risk, and 3) understanding the relationships between injury risk factors and RTS. This study demonstrates the how a Bayesian network may aid clinical decision making for RTS.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本研究利用贝叶斯网络对足球运动损伤后的重返赛场时间进行分类预测,并结合临床和非临床因素以及专家知识,创新性地提出了一个个性化的重返运动时间估算模型。

方法】:通过整合球员特征、比赛信息和损伤信息等十二个变量,应用贝叶斯网络对3374个球员赛季和6143次时间损失损伤的数据进行了建模分析。

实验】:使用德国职业足球联赛(Bundesliga,2014/2015至2020/2021赛季)的回顾性损伤数据,模型对重返赛场时间的敏感性为0.24-0.97,用户准确度为0.52-0.83;对损伤严重程度的敏感性为0.73-1.00,用户准确度为0.67-1.00。