Convolutional Neural Networks-Based Surrogate Model for Fast Computational Fluid Dynamics Simulations of Indoor Airflow Distribution
ENERGY AND BUILDINGS(2025)
Zhejiang Univ
Abstract
Computational fluid dynamics (CFD) is a powerful but time-consuming simulation tool for building indoor environment analysis. Artificial intelligence (AI)-based surrogate models, especially artificial neural networks (ANN)-based models which are the dominated ones, have demonstrated a great potential in accelerating CFD simulations. However, the published AI-based models are not good at capturing local spatial features in indoor airflow distribution, leading to poor local simulation accuracy. To overcome this challenge, this study proposes a convolutional neural networks (CNN)-based surrogate model for fast CFD simulations of indoor airflow distribution. Compared with other published AI-based models, this model can capture local spatial features in indoor airflow distribution datasets simulated by CFD, leading to higher accuracy. To enable this model to process room geometry information, a geometry representation strategy is proposed to convert room geometry information into inputs suitable for CNN models. Simulation data of 2000 indoor airflow velocity fields with various boundary conditions are generated using COMSOL Multiphysics. Five cases with various model training strategies are designed based on these simulation data to verify the performance of the CNN-based model by comparing this model with ANN-based and GNN-based models. The results show that the CNN-based model outperforms other models in all cases. The CNN-based and GNN-based models have significantly smaller local simulation errors than the ANN-based model. The simulation accuracy of the CNN-based model is improved by an average of 45.55 % and 32.90 % compared with the ANN-based and GNN-based models, respectively. Moreover, the computational time of the CNN-based model is reduced to about 0.05 % of the computational time of CFD simulations.
MoreTranslated text
Key words
Fast indoor environment simulations,Computational fluid dynamics,Convolutional neural networks,Artificial neural networks,Surrogate model
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined