WeChat Mini Program
Old Version Features

OmniStitch: Depth-Aware Stitching Framework for Omnidirectional Vision with Multiple Cameras

Sooho Kim,Soyeon Hong, Kyungsoo Park,Hyunsouk Cho,Kyung-Ah Sohn

ACM International Conference on Multimedia(2024)

Ajou University & Quramsoft

Cited 0|Views0
Abstract
Omnidirectional vision systems provide a 360-degree panoramic view, enabling full environmental awareness in various fields, such as Advanced Driver Assistance Systems (ADAS) and Virtual Reality (VR). Existing omnidirectional stitching methods rely on a single specialized 360-degree camera. However, due to hardware limitations such as high mounting heights and blind spots, adapting these methods to vehicles of varying sizes and geometries is challenging. These challenges include limited generalizability due to the reliance on predefined stitching regions for fixed camera arrays, performance degradation from distance parallax leading to large depth differences, and the absence of suitable datasets with ground truth for multi-camera omnidirectional systems. To overcome these challenges, we propose a novel omnidirectional stitching framework and a publicly available dataset tailored for varying distance scenarios with multiple cameras. The framework, referred to as OmniStitch, consists of a Stitching Region Maximization (SRM) module for automatic adaptation to different vehicles with multiple cameras and a Depth-Aware Stitching (DAS) module to handle depth differences caused by distance parallax between cameras. In addition, we create and release an omnidirectional stitching dataset, called GV360, which provides ground truth images that maintain the perspective of the 360-degree FOV, designed explicitly for vehicle-agnostic systems. Extensive evaluations of this dataset demonstrate that our framework outperforms state-of-the-art stitching models, especially in handling varying distance parallax. The proposed dataset and code are publicly available in https://github.com/tngh5004/Omnistitch.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined