WeChat Mini Program
Old Version Features

Target Fisher: A Consensus Structure-Based Target Prediction Tool, and Its Application in the Discovery of Selective MAO-B Inhibitors.

CHEMISTRY-A EUROPEAN JOURNAL(2025)

Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales

Cited 0|Views2
Abstract
In this work we introduce Target Fisher, a consensus structure-based target prediction tool that integrates molecular docking and machine learning with the aim to aid in the identification of potential biological targets and the optimization of the use of bioassays. Target Fisher uses per-residue energy decomposition profiles extracted from docking poses as fingerprints to train target-specific machine learning models. It provides predictions for a curated set of 37 protein targets, covering a diverse range of biological entities, and offers a user-friendly interface accessible via a web server (). In this sense, Target Fisher is a valuable tool to aid organic and medicinal chemistry groups in target identification, drug discovery and drug repurposing. As a case study, we demonstrate the efficacy of Target Fisher by screening a small library of assorted natural products for targets relevant to neurodegenerative diseases, which resulted in the identification and experimental validation of selective inhibitors of monoamine oxidase B (MAO-B).
More
Translated text
Key words
Target prediction,Machine learning,Docking,MAOB,Coumarins
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined