Shape Measurement of Radio Galaxies Using Equivariant CNNs
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024(2024)
关键词
Convolutional Neural Network,Shape Measures,Radio Galaxies,Neural Network,Biased Estimates,Measurement Bias,Simulation Accuracy,Real Observations,Gravitational Lensing,Image Features,Deconvolution,Convolutional Layers,Fast Fourier Transform,Image Reconstruction,Dense Layer,Line-of-sight,Reconstruction Process,Point Spread Function,Convolutional Neural Network Layers,Kernel Weight,Feature Extraction Layer,Traditional Convolutional Neural Network,Radio Astronomy,Latent Vector,Random Weights,Layer Of Autoencoder,Traditional Convolution
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要