WeChat Mini Program
Old Version Features

Finite Matrix Multiplication Algorithms from Infinite Groups

Innovations in Theoretical Computer Science(2025)

Cited 0|Views1
Abstract
The Cohn-Umans (FOCS '03) group-theoretic framework for matrix multiplication produces fast matrix multiplication algorithms from three subsets of a finite group $G$ satisfying a simple combinatorial condition (the Triple Product Property). The complexity of such an algorithm then depends on the representation theory of $G$. In this paper we extend the group-theoretic framework to the setting of infinite groups. In particular, this allows us to obtain constructions in Lie groups, with favorable parameters, that are provably impossible in finite groups of Lie type (Blasiak, Cohn, Grochow, Pratt, and Umans, ITCS '23). Previously the Lie group setting was investigated purely as an analogue of the finite group case; a key contribution in this paper is a fully developed framework for obtaining bona fide matrix multiplication algorithms directly from Lie group constructions.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined