WeChat Mini Program
Old Version Features

FedDA: Resource-adaptive Federated Learning with Dual-Alignment Aggregation Optimization for Heterogeneous Edge Devices

FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE(2025)

Cited 0|Views11
Abstract
Federated learning (FL) is an emerging distributed learning paradigm that allows multiple clients to collaborate on training a global model without sharing their local data. However, in practical heterogeneous edge device scenarios, FL faces the challenges of system heterogeneity and data heterogeneity, which leads to unfair participation and degraded global model performance. In this paper, we introduce FedDA, a resource- adaptive FL framework, which adapts to the client's computing resources by assigning heterogeneous models of different sizes. To improve the performance of heterogeneous model aggregation and adjust to non- independent and identically distributed (non-i.i.d.) data, we propose a dual-alignment aggregation optimization method, i.e., parameter feature space alignment and output space alignment. Specifically, FedDA exploits the permutation symmetry property of weight space to permutate the model parameter positions via an adaptive layer-wise matching method, thereby aligning models with significant deviations in parameter feature space. FedDA mitigates the imbalance in parameter quantity between smaller and larger models through parameter expansion. Additionally, FedDA maps client labels into a uniform embedding space through output space alignment, thus reducing model parameter deviations due to non-i.i.d. data without additional client-side computing overhead. We evaluate the performance of FedDA on benchmark datasets, including FashionMNIST, CIFAR10, CIFAR100 and AGNews. Experimental results demonstrate that FedDA achieves up to 8.71% improvement in model accuracy compared to baseline methods, highlighting its effectiveness in addressing the challenges of heterogeneity.
More
Translated text
Key words
Federated learning,Resource-adaptive,Aggregation optimization,Client heterogeneity,Edge intelligence
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined