Application of Machine Learning Method for Energy Reconstruction on Space Based High Granularity Calorimeter
Experimental Astronomy(2024)
Chinese Academy of Sciences
Abstract
The High Energy Cosmic-Radiation Detection Facility (HERD) is dedicated to achieving several scientific objectives, including the search for dark matter, precise measurement of the cosmic ray spectrum, and gamma-ray sky survey observations. HERD’s innovative design incorporates a three-dimensional imaging calorimeter with five sensitive faces, significantly enhancing geometric acceptance. However, this design introduces a new challenge for reconstructing particles incident from all directions. This article aims to integrate rapidly advancing deep learning techniques into the reconstruction task. Utilizing simulation data, Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and other deep learning networks are employed to reconstruct the energy of isotropic electrons. Model performance sees a significant boost through the application of end-layer visible energy correction and a “multi-class multi-prediction” approach, involving different models trained for distinct energy ranges. Moreover, recognizing differences between simulation and physical samples, the model is validated using the beam test data. The model predicts an energy resolution of better than 1
MoreTranslated text
Key words
Machine learning,HERD,Energy reconstruction
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined