WeChat Mini Program
Old Version Features

Integration of Proteomic Data with Genome-Scale Metabolic Models: A Methodological Overview.

Protein Science(2024)SCI 4区

Univ Galway

Cited 0|Views6
Abstract
The integration of proteomics data with constraint-based reconstruction and analysis (COBRA) models plays a pivotal role in understanding the relationship between genotype and phenotype and bridges the gap between genome-level phenomena and functional adaptations. Integrating a generic genome-scale model with information on proteins enables generation of a context-specific metabolic model which improves the accuracy of model prediction. This review explores methodologies for incorporating proteomics data into genome-scale models. Available methods are grouped into four distinct categories based on their approach to integrate proteomics data and their depth of modeling. Within each category section various methods are introduced in chronological order of publication demonstrating the progress of this field. Furthermore, challenges and potential solutions to further progress are outlined, including the limited availability of appropriate in vitro data, experimental enzyme turnover rates, and the trade-off between model accuracy, computational tractability, and data scarcity. In conclusion, methods employing simpler approaches demand fewer kinetic and omics data, consequently leading to a less complex mathematical problem and reduced computational expenses. On the other hand, approaches that delve deeper into cellular mechanisms and aim to create detailed mathematical models necessitate more extensive kinetic and omics data, resulting in a more complex and computationally demanding problem. However, in some cases, this increased cost can be justified by the potential for more precise predictions.
More
Translated text
Key words
constraint-based modeling,genome-scale model,proteomics,systems biology
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文综述了将蛋白质组学数据与基因组规模代谢模型结合的方法,以提高模型预测的准确性,并探讨了不同方法的优缺点及面临的挑战。

方法】:文章将现有方法分为四类,基于它们整合蛋白质组学数据的方式和建模深度,分别介绍了各种方法。

实验】:本文是对现有研究方法的概述,未涉及具体实验过程,故无特定数据集名称和实验结果。