3Darticcyclists: Generating Synthetic Articulated 8D Pose-Controllable Cyclist Data for Computer Vision Applications
CoRR(2024)
Abstract
In Autonomous Driving (AD) Perception, cyclists are considered safety-critical scene objects. Commonly used publicly-available AD datasets typically contain large amounts of car and vehicle object instances but a low number of cyclist instances, usually with limited appearance and pose diversity. This cyclist training data scarcity problem not only limits the generalization of deep-learning perception models for cyclist semantic segmentation, pose estimation, and cyclist crossing intention prediction, but also limits research on new cyclist-related tasks such as fine-grained cyclist pose estimation and spatio-temporal analysis under complex interactions between humans and articulated objects. To address this data scarcity problem, in this paper we propose a framework to generate synthetic dynamic 3D cyclist data assets that can be used to generate training data for different tasks. In our framework, we designed a methodology for creating a new part-based multi-view articulated synthetic 3D bicycle dataset that we call 3DArticBikes that we use to train a 3D Gaussian Splatting (3DGS)-based reconstruction and image rendering method. We then propose a parametric bicycle 3DGS composition model to assemble 8-DoF pose-controllable 3D bicycles. Finally, using dynamic information from cyclist videos, we build a complete synthetic dynamic 3D cyclist (rider pedaling a bicycle) by re-posing a selectable synthetic 3D person, while automatically placing the rider onto one of our new articulated 3D bicycles using a proposed 3D Keypoint optimization-based Inverse Kinematics pose refinement. We present both, qualitative and quantitative results where we compare our generated cyclists against those from a recent stable diffusion-based method.
MoreTranslated text
Key words
Training Data,Quantitative Results,Autonomous Vehicles,Semantic Segmentation,Dynamic Information,Pose Estimation,Spatiotemporal Analysis,Complete 3D,3D Gaussian,Input Image,3D Reconstruction,Rigid Body,3D Coordinates,3D Point,3D Position,Separate Parts,Camera View,Perception Scores,Camera Pose,Steering Angle,3D Body,3D Pose,Front Wheel,Rigid Parts,Bicycle Model,Body Pose,3D Joint,Fréchet Inception Distance,3D Rotation,Joint Rotation
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined