WeChat Mini Program
Old Version Features

A Power-Adaptive Neuron Model and Circuit Implementation

NONLINEAR DYNAMICS(2025)

Hunan University

Cited 0|Views8
Abstract
Regarding the performance degradation and battery life issues faced by mobile smart devices during low energy supply. This article thoroughly explores the strategies employed by biological neurons to stabilize spike emission frequency and reduce power consumption during low energy supply, as well as the characteristics of myelin sheath in reducing power consumption. A power-adaptive neuron model and its corresponding power-adaptive neuron circuit system (PANCS) are proposed, which adaptively adjust power consumption according to energy supply conditions. Simulation and practical experiments both indicate that PANCS has acquired power-adaptive adjustment capability (PAAC), maintaining stable spike emission frequency when the system is under insufficient energy supply. This ability increases with the degree of myelination of PANCS. Power consumption analysis indicates that both PAAC and myelination lead to a reduction in power consumption for PANCS when energy supply is insufficient. Noise experiments demonstrate that the efficacy of PAAC entails sacrificing the robustness of PANCS, and myelination cannot reverse the decrease in robustness. Research findings of this paper endow neural morphology networks with the ability to adaptively adjust power consumption according to energy supply conditions to cope with extreme situations, providing new insights for the development of AI.
More
Translated text
Key words
Neurodynamics,Myelin sheath,Memristor,Neuromorphic networks,Robotics,Biomimetic neuronal circuits
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined