WeChat Mini Program
Old Version Features

Improving Performance of Air Quality Monitoring: a Qualitative Data Analysis

IAES International Journal of Artificial Intelligence (IJ-AI)(2024)

Cited 0|Views1
Abstract
This research aims to improve performance of air quality monitoring and understand the latest relevant technological developments. Employing the Kitchenham systematic literature review (SLR) method, the study examines 436 journal articles and conference proceedings published from 2019 to 2023, sourced from the Web of Science (WoS) and Scopus databases. The analysis was carried out using Leximancer 5.0 and identified research five themes; i) air quality, ii) artificial intelligence (AI), iii) pollution, iv) middleware, and v) smart environment. The results showed that only 48 journals had strict inclusion and exclusion criteria include relevance to the research theme, methodological quality, and contribution to the research field. In addition, this research integrates AI and middleware, which has significantly contributed to improving air quality. These findings can become the basis for the development of air quality monitoring technology that is more sophisticated and responsive to environmental needs. This research contributes to further understanding air quality monitoring technology trends and designing solutions to improve overall air quality.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined