Chip-Sized Microscopy for Continuous Monitoring: Application in White Wine Fermentation and Yeast Cell Counting Via Deep Learning
Abstract
Nowadays, continuous monitoring is a difficult issue in microscopy. A chip-sized microscope was developed, composed only of microelectronic components, with high optical resolution and a wide field of view. Due to its miniaturized size, it can be placed on or attached to the sample for continuous monitoring in the sample environment. An example of an application of this microscope for the food and beverage industry is described, referring to the study of the fermentation process of white wine. The comparison of the images acquired with conventional optical microscopy reveals similar results. To automatically count yeast cells, the traditional image postprocessing is compared with deep learning. Neural networks achieve similar cell recognition characteristics but with an ~100× speed improvement, by directly processing the obtained holograms.
MoreTranslated text
Key words
microscope,compact,distributed,fermentation process,neural network
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
MicroVi: A Cost-Effective Microscopy Solution for Yeast Cell Detection and Count in Wine Value Chain
BIOSENSORS-BASEL 2025
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined