Development and Validation of an AI-Driven System for Automatic Literature Analysis and Molecular Regulatory Network Construction
ADVANCED SCIENCE(2024)
Wuhan Univ
Abstract
AbstractDecoding gene regulatory networks is essential for understanding the mechanisms underlying many complex diseases. GENET is developed, an automated system designed to extract and visualize extensive molecular relationships from published biomedical literature. Using natural language processing, entities and relations are identified from a randomly selected set of 1788 scientific articles, and visualized in a filterable knowledge graph. The performance of GENET is evaluated and compared with existing methods. The named entity recognition model has achieved an overall precision of 94.23% (4835/5131; 93.56–94.84%), recall of 97.72% (4835/4948; 97.27–98.10%), and an F1 score of 95.94%. The relation extraction model has demonstrated an overall precision of 91.63% (2593/2830; 90.55–92.59%), recall of 89.17% (2593/2908; 87.99–90.25%), and an F1 score of 90.38%. GENET significantly outperforms existing methods in extracting molecular relationships (P < 0.001). Additionally, GENET has successfully predicted WNT family member 4 regulates insulin‐like growth factor 2 via signal transducer and activator of transcription 3 in colon cancer. With RNA sequencing data and multiple immunofluorescence, the authenticity of this prediction is validated, supporting the promising feasibility of GENET.
MoreTranslated text
Key words
artificial intelligence,automatic literature analysis,molecular regulatory networks
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined