New Calculation of Collision Integrals for Cosmological Phase Transitions
EPJ Web of Conferences(2024)
Abstract
First order phase transitions in the early universe may have left a variety of experimentally accessible imprints. The dynamics of such transitions is governed by the density perturbations caused by the propagation of the bubble wall in the false vacuum plasma, conveniently described by a Boltzmann equation. The determination of the bubble wall expansion velocity is crucial to determine the experimental signatures of the transition. We report on the first full (numerical) solution to the Boltzmann equation. Differently from traditional ones, our approach does not rely on any ansatz. The results significantly differ from the ones obtained within the fluid approximation and large differences for the friction acting on the bubble wall are found. The wall velocity is calculated in a singlet extension of the Standard Model, including out-of-equilibrium contributions from both the top quark and the electroweak gauge bosons.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined