Persistent Homology Classifies Parameter Dependence of Patterns in Turing Systems
arXiv · Quantitative Methods
Abstract
This paper illustrates a further application of topological data analysis to the study of self-organising models for chemical and biological systems. In particular, we investigate whether topological summaries can capture the parameter dependence of pattern topology in reaction diffusion systems, by examining the homology of sublevel sets of solutions to Turing reaction diffusion systems for a range of parameters. We demonstrate that a topological clustering algorithm can reveal how pattern topology depends on parameters, using the chlorite–iodide–malonic acid system, and the prototypical Schnakenberg system for illustration. In addition, we discuss the prospective application of such clustering, for instance in refining priors for detailed parameter estimation for self-organising systems.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined