Estimation of Sorghum Seedling Number from Drone Image Based on Support Vector Machine and YOLO Algorithms
FRONTIERS IN PLANT SCIENCE(2024)
Guizhou Univ
Abstract
Accurately counting the number of sorghum seedlings from images captured by unmanned aerial vehicles (UAV) is useful for identifying sorghum varieties with high seedling emergence rates in breeding programs. The traditional method is manual counting, which is time-consuming and laborious. Recently, UAV have been widely used for crop growth monitoring because of their low cost, and their ability to collect high-resolution images and other data non-destructively. However, estimating the number of sorghum seedlings is challenging because of the complexity of field environments. The aim of this study was to test three models for counting sorghum seedlings rapidly and automatically from red-green-blue (RGB) images captured at different flight altitudes by a UAV. The three models were a machine learning approach (Support Vector Machines, SVM) and two deep learning approaches (YOLOv5 and YOLOv8). The robustness of the models was verified using RGB images collected at different heights. The R2 values of the model outputs for images captured at heights of 15 m, 30 m, and 45 m were, respectively, (SVM: 0.67, 0.57, 0.51), (YOLOv5: 0.76, 0.57, 0.56), and (YOLOv8: 0.93, 0.90, 0.71). Therefore, the YOLOv8 model was most accurate in estimating the number of sorghum seedlings. The results indicate that UAV images combined with an appropriate model can be effective for large-scale counting of sorghum seedlings. This method will be a useful tool for sorghum phenotyping.
MoreTranslated text
Key words
UAV,sorghum,seedling,SVM,YOLO
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined