Efficient Coordination of Federated Learning and Inference Offloading at the Edge: A Proactive Optimization Paradigm
IEEE TRANSACTIONS ON MOBILE COMPUTING(2025)
Sun Yat Sen Univ
Abstract
Benefiting from hardware upgrades and deep learning techniques, more and more end devices can independently support a variety of intelligent applications. Further powered by edge computing technologies, the end-edge collaboration paradigm becomes one mainstream approach for achieving advanced edge intelligence (EI). To fully exploit the system resources, it is desirable to coordinate diverse EI services efficiently. Thus, we present a novel framework to jointly optimize the costperformance trade-off for two distinct but typical EI services, where end devices simultaneously perform federated learning (FL) model training and conduct model inference with the assistance of edge offloading. However, balancing the long-term cost-performance trade-off is highly non-trivial, especially in the absence of knowledge of future system dynamics. Moreover, the capacity heterogeneity further increases the difficulty of service coordination among resource-limited end devices. To overcome these challenges, we first analyze the optimality of inference offloading decisions with and without FL model training and quantify their mutual effects due to local resource contention. By incorporating the loss estimation of FL training model, we then propose a novel proactive policy with theoretical guarantees, which proactively controls the stopping of FL training procedure to balance well the trade-offs between FL model performance and resource costs while fulfilling the inference performance requirements. Extensive results show the efficiency and robustness of our proposed algorithm for EI service coordination in dynamic end-edge collaboration scenarios.
MoreTranslated text
Key words
Training,Computational modeling,Performance evaluation,Optimization,Data models,Costs,Artificial intelligence,Edge computing,federated learning,inference offloading,online optimization
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined