WeChat Mini Program
Old Version Features

Controllable Traffic Simulation Through LLM-Guided Hierarchical Chain-of-Thought Reasoning.

Zhiyuan Liu,Leheng Li,Yuning Wang, Haotian Lin, Hao Cheng, Zhizhe Liu,Lei He,Jianqiang Wang

CoRR(2024)

Cited 0|Views5
Abstract
Evaluating autonomous driving systems in complex and diverse traffic scenarios through controllable simulation is essential to ensure their safety and reliability. However, existing traffic simulation methods face challenges in their controllability. To address this, we propose a novel diffusion-based and LLM-enhanced traffic simulation framework. Our approach incorporates a high-level understanding module and a low-level refinement module, which systematically examines the hierarchical structure of traffic elements, guides LLMs to thoroughly analyze traffic scenario descriptions step by step, and refines the generation by self-reflection, enhancing their understanding of complex situations. Furthermore, we propose a Frenet-frame-based cost function framework that provides LLMs with geometrically meaningful quantities, improving their grasp of spatial relationships in a scenario and enabling more accurate cost function generation. Experiments on the Waymo Open Motion Dataset (WOMD) demonstrate that our method can handle more intricate descriptions and generate a broader range of scenarios in a controllable manner.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined